An Introduction to Programming in Matlab

CSSCR Back to School Seminar 2010

Emily Blumenthal
eblument@uw.edu
What is Matlab?

• MATrix LABoratory
 – Stores information as $N \times M \times \ldots$ dimensional matrices

• Applications include
 – Matrix manipulation
 – Digital signal processing
 – 3D Graphics

• Toolboxes for specific needs
 – Statistics Toolbox
 – Psychtoolbox
Matlab Resources

• Matlab tutorials:
 – Matlab lessons from Ione Fine and Geoff Boynton: http://courses.washington.edu/matlab1/lessons.html
 – http://www.duke.edu/~hpgavin/matlab.html

• demo
• help COMMAND
• doc COMMAND
• helpdesk
The Matlab Environment

- Lists commands and answers
- Command history
- List of stored variables

```
EDU>> strl = 'hello world'
strl =
hello world
EDU>> vec1 = [0 1 2 3 4 5]
vec1 =
0 1 2 3 4 5
```

Current Directory: /Users/ezbaza/Documents/MATLAB
Matlab as a Calculator

• Each result is saved in a separate variable
• All variables are arrays -- the fundamental data type in Matlab is a matrix; even scalars are saved as 1X1 arrays. Variables come in different sizes e.g. m X n X p X ...
• There are different classes of data types, default numerical data type is a double. The double data type is a floating point number with 16 digits of precision.
Variables in Memory

- **Who**: Gives you a list of all of the variables you have in memory
- **Whos**: Gives you the name of each variable, how long it is, how much computer memory the list uses, and the type of variable (e.g. a list of characters -- char -- or double.
- **Disp**: Displays a particular variable

- **Clear x**: deletes a particular variable from memory
- **Clear all**: deletes all variables from memory
M-Files and Paths

- File -> New -> Blank M-File

- Create a comment – %

- Set a path: Path, pwd, cd
Strings and Vectors

• String: a sequence of letters stored as a variable
• `string1='hello world!';`
 – Single quotes identify a string

• Vector: a 1 X n array of numbers
• `vector1=[0 1 2 3 3 5 10];`
 – Square brackets identify a vector
 – `linspace` and the `:` operator
Indexing and Subscripting

- string1='hello world!'
- string1(2)=e
- string1(12)='?'
 >> string1(12)='?'
 string1 = hello world?

- vector1=1:10:100
 >> vector1(3)=21
 >> vector1(3:5)=21 31 41
Matrices

- 2 dimensional matrices:
 - mat1=[1 2 3 4; 5 6 7 8; 9 10 11 12]
 - mat1=[1 2 3 4
 5 6 7 8
 9 10 11 12]

 use square brackets to concatenate, enter values sequentially in rows; semicolon (;) marks the start of a new row. Column separator is a comma or a space, row separator is a semicolon or enter

 - Zeros, ones, rand, magic, eye etc.
Indexing into Matrices

• Vectors and scalars are initialized the same way as matrices. It is important to note that MATLAB indexes matrices in the following manner:

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)

• This means that the first element always has index (1,1), not (0,0).
Matrix Operations

• size(mat)
• Transpose using a single quote (‘)

• Addition and subtraction
 – Operations with scalars
 – Operations with vectors of the same size

• Scalar multiplication and division

• Matrix multiplication and division
Matrix Operations
(from Matlab's tutorial)

Matrix Operations

\[
\begin{array}{cccc}
\text{Scalar multiplication} & \text{Scalar expansion} & \text{Matrix multiplication} \\
\end{array}
\]

>> A
A =
1 2
4 5
7 8

>> B = 2 * A
B =
2 4
8 10
14 16

>> A
A =
1 2
4 5
7 8

>> B = A + 2
B =
3 4
6 7
9 10

>> A
A =
1 2
4 5
7 8

>> B
B =
1 0 1
1 1 0

>> C = A * B
C =
3 2 1
9 5 4
15 8 7
Saving & Reading Data

- **.mat format**
 - save filename variables
 - load filename

- **Excel**
 - xlswrite(File, Array, Sheet, Range)
 - xlsread(File, Sheet, Range)

- Can also read/write from a text file
Basic Plotting

- `gcf` -- get current figure (handle/pointer)
- `gca` -- get handle to current axis

- Change figure properties using the `set` command
 - `set(gcf, ‘COMMAND’, PROPERTY)`
PLOT Linear plot.
PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix, then the vector is plotted versus the rows or columns of the matrix, whichever line up. If X is a scalar and Y is a vector, disconnected line objects are created and plotted as discrete points vertically at X.

PLOT(Y) plots the columns of Y versus their index.
If Y is complex, PLOT(Y) is equivalent to PLOT(real(Y),imag(Y)). In all other uses of PLOT, the imaginary part is ignored.

Various line types, plot symbols and colors may be obtained with PLOT(X,Y,S) where S is a character string made from one element from any or all the following 3 columns:

b	blue	point	solid
g	green	o	circle
r	red	x	x-mark
c	cyan	+	plus
m	magenta	*	star
y	yellow	s	square
k	black	d	diamond
w	white	v	triangle (down)
		^	triangle (up)
		<	triangle (left)
		>	triangle (right)
p	pentagram		
h	hexagram		

For example, PLOT(X,Y,'c+:') plots a cyan dotted line with a plus at each data point; PLOT(X,Y,'bd') plots blue diamond at each data point but does not draw any line.
More Plotting

• Error bar plots: `errorbar(X,Y,L,U)`
 – Plots the graph of vector X vs. vector Y
 with error bars specified by vectors L and U

• Bar Graphs: `bar(X,Y)`
 – Plots a bar graph of X and Y.
 – `bar(X,Y,WIDTH)` specifies the width of the bars. `WIDTH>1` produces overlapping bars

• Histograms: `hist(Y,M)`
 – Groups data Y into M bins
Saving Figures

• `saveas('x', FILENAME, FORMAT)`
 – E.g. `saveas(gcf, 'myhistogram', 'jpg')`
 – Writes current figure to a jpg file, saved in current working directory
3D Plotting

- `mesh(X,Y,Z)`: plots the colored parametric mesh defined by the matrices X, Y, and Z. The axes are determined by the range of X, Y, and Z.
- `surf(X,Y,Z)`: plots a 3D colored surface defined by matrices X, Y, and Z.
- `help('graph3d')`
Basic Graphics

- **image(C)**: displays the current matrix as an image
- **imagesc(C)**: scale data and display as an image; scaled to use full colormap
- **colormap(MAP)**: sets the current figure’s color to MAP